£129.95 VAT Inclusive

Cooper Cooler: Fast Beverage Cooler is a state of the art beverage cooler that instantly chills and cools whatever drink is placed inside it.

The Cooper Cooler works by rapidly circulating ice-cold water in and around the spinning drink, causing it to reach maximum refrigeration temperature within minutes.

This amazing device works with all liquids, and cool Wine Bottles, Soft Drink, Cans, and any other container that can fit inside it.


Out of stock




Currently, the fastest appliance/method to quickly chill beverages when they are stored at room temperature or are already refrigerated but still not cold enough due to inconsistent chilling or desire for even lower temperatures. For chilling a can it is 40 times faster than a freezer and for chilling a wine bottle it is 10 times faster than the freezer. Never worry about forgetting or pre-planning to put your beverages in the refrigerator. Chill-On-Demand™ you’re beverages whenever the need arises, especially useful for chilling wines to the proper serving temperature. Great for parties, unexpected guests, or if you do not have a lot of refrigerator space. The Cooper Cooler™ is much faster than the so-called “iceless” chillers that use a Peltier/thermo-electric system. These units are only good for maintaining an already chilled bottled, not good for rapid chilling like our Cooper Cooler™.


Able to consistently chill beverages to an exact temperature without altering any beverage properties like taste and carbonation. Ability to chill your drinks to “ice cold” 1°C without the fear of over freezing or exploding your carbonated beverages. No messy clean ups like when your beverage explodes in the freezer because you forgot to take it out.


Can chill almost any sized single-serve beverage in any container material like aluminum, glass, and plastic. In addition, we are able to chill wine bottles. Most versatile of all the quick chillers for easily chilling a wide variety/range of beverage types quickly and easily.

“Space Efficiency”

Space efficiency—beverages can be stored, freeing up valuable refrigerator space allowing more room for other perishables. These space issues can be more acute in the office breakroom or dormitory setting.

“Ease of use”

Simple appliance using inexpensive, non-toxic, and readily available materials–just add ice cubes and water. Short setup time/procedure and easy to maintain.


“First of its kind” truly functional consumer electric rapid beverage chilling appliance.


The Cooper Cooler™ is the fastest way to rapidly chill your warm beverages from 77°F/25°C to refrigerator cold (43°F/6°C) in the below times:
– Cans in 1 minute
– Bottles in 3.5 minutes
– Wine bottles in 6 minutes
For ice cold (33°F/1°C) beverages, just double these chill times.

Our process for chilling beverages is 90x faster than a refrigerator and 40x faster than a freezer without explosions or foaming

At the touch of a button, chill 750mL wine bottles from room temperature (77°F/25°C) to the perfect serving temperature:
– 68F/20C in 1 minute
– 53F/11C in 3.5 minutes
– 43F 6C in 6 minutes
Use the NO SPIN option for chilling delicate wines without worry.

Just add ice, water, plug in, and chill.

Save refrigerator space and get your beverages cold when you want them.

Perfectly safe for chilling carbonated beverages without foaming over


How long does it take to chill beverages using conventional methods?

In a refrigerator, it takes about 4 hours for both cans and bottles. In a freezer, it takes 50 minutes (but don’t let it stay longer than that or it will freeze, and possibly explode). In ice water, it takes about 20 minutes for cans and 25 minutes for bottles. These chill times are defined as bringing the beverage from room temperature (77°F/25°C) to a cold drinking temperature (43°F/6°C).

Why doesn’t a carbonated beverage explode when you open it after being chilled in the Cooper Cooler™?

Because the beverage is rotated, not shaken. It is not simple to explain, as it involves scientific concepts such as solubility, Henry’s law and nucleation, among others.

To explain why carbonated beverages don’t fizz over when rotated, you have to know why they do fizz over when shaken. It has to do with the air pocket. A carbonated beverage is one in which carbon dioxide is dissolved in the liquid under pressure (that’s Henry’s Law). When the pressure is reduced (upon opening), the liquid is capable of holding less carbon dioxide (C02), and the CO2 will come out of solution. So all carbonated beverages fizz upon opening. Whether they fizz over (liquid comes out of the container) depends on how quickly CO2 comes out of solution.

In order for CO2 to come out of solution, it needs a ‘nucleation site’ to do so. Those nucleation sites can be either gaseous pockets, or an irregularity along the wall. (Look at how a stream of bubbles form on a specific spot on a glass of beer or soda. You can’t see it, but that spot is an irregularity.)

When a beverage is shaken, the air pocket is broken up into a zillion small pockets dispersed throughout the beverage. When the container is opened, CO2 in solution has sites all over the place, and it comes out of solution so quickly, that the liquid has no time to get out of the way, and it rises up and out, that is, it fizzes over.

When a beverage is rotated, the air pocket basically stays intact. There are no nucleation sites dispersed throughout, and the usual slow decarbonation takes place at the infrequent irregularities, and at the surface.

How much ice do you need?

Ice is melted every time you chill a beverage. The amount of ice is the same as if you added the ice directly to the beverage. This amounts to roughly 4 typical ice cubes (25ml each) for each beverage chilled.

One tray of ice (assuming 16 cubes about an inch each side) will chill 2 beverages (12 ounces). Two trays of ice will chill 6 beverages.

For the first tray, about 8 ice cubes are melted in making the re-circulating water cold. The remaining 8 cubes are then available to chill 2 beverages. The second tray of ice will chill 4 because the re-circulating water is already cold.

Why do bottles take longer to chill than cans?

Two reasons. The material is thicker in bottles, and the material acts like a thermal insulator. Bottles, whether plastic or glass, act as insulators. Aluminum is a good conductor of heat or cold.

What is the coldest I can get a beverage with the Cooper Cooler™?

You can’t get the re-circulating water lower than its freezing point (32°F/0°C). You can’t get the beverage colder than the re-circulating water, but you can get it to that temperature if you run an extra long Cooper Cooler™ cycle.

However, if you add a solute (like salt or ethanol) to the recycling water to lower the freezing temperature, you can chill your beverage below the freezing temperature of water.

Ethanol in the form of ordinary spirits works well, although it can get expensive.

Warning: Using salt in the Cooper Cooler™ will cause it to corrode and will void the warranty.

What is the hottest I can get a beverage with the Cooper Cooler™?

The hottest you can get a beverage is the temperature of the re-circulating water you add. Don’t add boiling water. Use hot tap water. Adding water any hotter than 140°F/60°C and the Cooper Cooler™ ™ might be deformed. If you are using the Cooper Cooler™ ™ to warm a baby bottle, the milk or formula will never be hotter than the water you add to the unit.

What if my beverage in not able to rotate or spin since it is non-cylindrical?

Use the NO SPIN option.

What is the largest size bottle, can, etc… that will fit in the Cooper Cooler™?

The Cooper Cooler™ will fit a container with a diameter that is not larger than 82.55 millimeters. Most 750mL wine bottles will fit in the Cooper Cooler™ . Please note certain Champagne/sparkling wine bottles may not fit in the Cooper Cooler™ since they use thicker glass and therefore are of larger diameter than a typical 750mL wine bottle.

How does the Cooper Cooler™ compare to other beverage/drink chillers or Peltier/Thermo-electric chillers?

There are 2 main types of chillers/coolers that are in direct competition to the Cooper Cooler™:

A) Peltier chillers which are also called thermo-electric chillers. Let’s first quickly explain how these devices work using the Peltier Effect or Principle. Simply put, the Peltier Effect occurs when you run electricity through two dissimilar metals or through two dissimilar semi-conductor materials which causes one side to become hot and the other to become cold. The cold side is in direct contact with the metal of the chill chamber which in turn over time gets cold. This in turn chills the surrounding air. The wine bottle is placed into the unit in a vertical orientation through an opening on top of the unit into the chill chamber. These devices are only useful for maintaining your wine bottle’s current temperature and are not useful for rapidly chilling a warm wine bottle. In fact, the more truthful marketers of these devices will even state in their instruction manual that the wine bottle must already be chilled before using their device or else it will take hours to chill it down to a realistic serving temperature. A regular refrigerator will actually chill much faster than these devices since they are completely sealed to allow the cold air to do its job of chilling the bottle. As stated these devices do not completely enclose the entire wine bottle and hence whatever cold air is produced can easily escape. Because of this, some manufacturers include a collar to wrap around the bottle’s neck to prevent this, however this still does not do much for chilling the bottle.

The Cooper Cooler™ ™ is over 100 times faster than these Peltier devices because ice cold water is a much more efficient means of transferring cold versus cold air. To quantify the difference, water is 800 times denser than air at sea level and in turn makes it a perfect chill transfer medium. Even super cold air at -100°F/-73°C would not beat the transfer abilities of ice cold water at 32°F/0°C. There are other scientific reasons why water is a perfect cold transfer medium, but are beyond the scope of this FAQ section. Also, these Peltier devices can only be used on wine bottles. Simply put, the Cooper Cooler™ ™ is much faster and more versatile in what it can chill than these devices. The only real way to use these Peltier devices is to chill your wine with a Cooper Cooler™ ™ and use these devices to maintain their temperature when it is a hot day if you are not able to drink it fast enough before it starts to warm up.

B) Water and ice based chillers with an impeller at the bottom. In these products, the wine bottle is placed in an upright or vertical orientation and the user places ice and water that surrounds the bottle. There is also a product that is a variation on this in that it has frozen chilling packets that are used in place of ice cubes. These chilling packets still need to be frozen ahead of time in the freezer just like regular ice cubes and are actually less efficient than ice cubes for chilling. In addition, they will only last to chill one wine bottle. At the bottom of the unit is an impeller or propeller that then swishes the cold water around the stationary bottle.

HOW DOES THE COOPER COOLER™ ™ COMPARE: The Cooper Cooler™ ™ is 2-3 times faster than these chillers because of the rotating of the beverage container which allows for much faster cooling of the internal liquid contents. Also, the fact that the re-circulating ice cold water (32°F/0°C) is being sprayed continuously over the beverage in a smooth or laminar manner allowing for a much more efficient cold transfer over the beverage container’s surface–this is the reason why our NO SPIN mode is still faster than these chillers. In addition, these wine chillers are not very easy to use for chilling smaller single-serve beverage containers like beer, soda, water cans or bottles. Our Cooper Cooler™ ™ was specifically designed to be versatile in the variety and size of beverage containers it can chill.

Why is it important to serve wine at the proper temperature?

Wine experts agree that serving wine at the proper temperature can impact the taste and smell of the wine.

How do I use and maintain my Cooper Cooler™?

Our user manual has details on use and care of the Cooper Cooler

Key Points:

– Change of mind refunds are subject to a 10% restocking fee, and returned products must be arranged by the buyer at the buyer’s expense.
– After purchase, the email address on the order may be placed on an MPS marketing-related mailing list automatically. Customers may unsubscribe at any time.
– Stock is limited and may become unavailable at short notice.
– To the extent permitted by law, MPS will not be liable for any loss of income, loss of profits, loss of contracts, loss of data or for any indirect or consequential loss or damage of any kind howsoever arising and whether caused by tort (including negligence), breach of contract or otherwise; and our maximum aggregate liability for any product supplied to you whether in contract, tort (including negligence) or otherwise shall in no circumstances exceed the amount payable by you to us in respect of the product(s) in question.

Version #2109 (Updated Sept 2021)

  1. Please read the following Terms and Conditions carefully before placing your order. These Terms and Conditions contain important information about the ordering, processing, fulfilment and delivery of goods, including limitations of liability.
    1. These Terms and Conditions constitute a contract between the customer (yourself) and Modern Power Solutions PTY LTD, hereon referred to as “MPS”
    2. By browsing the website or placing an order, you agree to these Terms and Conditions as set out below, which constitutes a legally binding agreement between us and you for the supply of products.
    3. The agreement, together with your order, constitutes the entire agreement between us and you for the supply of Products. The agreement cannot be varied unless we agree to vary it in writing or by email.
    4. You must take your own precautions to ensure that your process for accessing the website does not expose you to risk of viruses, malicious computer code or other forms of interference which may damage your computer system. We take no responsibility for any such damage, which may arise in connection with your use of the website.
    5. Orders will be deemed to have been received by MPS at the time MPS sends an order confirmation to your nominated email address.
    6. MPS reserves the right to decline to enter into a purchase contract with you and may cancel your order at any time prior to dispatch of the product(s).
  2. Order refunds
    1. Please allow up to a 10-day processing time for customer refunds.
    2. Refunds are subject to a 10% restocking fee, based on the total order refund request amount. The restocking fee is calculated based on shipping, handling, logistic and administration fees.
    3. Customers must arrange the return of products at their own expense back to the local facility.
    4. To the extent permitted by law, MPS will not be liable for any loss of income, loss of profits, loss of contracts, loss of data or for any indirect or consequential loss or damage of any kind howsoever arising and whether caused by tort (including negligence), breach of contract or otherwise; and our maximum aggregate liability for any product supplied to you whether in contract, tort (including negligence) or otherwise shall in no circumstances exceed the amount payable by you to us in respect of the product(s) in question.
    5. For the avoidance of doubt, nothing in this clause limits or restricts your ability to make a claim that may be available to you for our failure to comply with a guarantee under the Consumer Law.
  3. Placing an order
    1. Stock is limited and may become unavailable at short notice, despite indicating otherwise. Best efforts will be made to promptly notify customers of products out of stock and/or if any delays.
    2. Lead time for orders are indicated by MPS online, over email and over the phone. However, delivery times are subject to a margin of error and often out of the control of MPS. If customers have requirements for lead times and delivery dates, this should be arranged with MPS prior to ordering.
    3. Shipment tracking numbers are provided to customers for all orders at MPS.
    4. Products damaged in transit are subject to replacement by MPS without cost to the consumer. Depending on the circumstance, MPS may require the return of faulty product(s) prior to arranging warranty replacement units.
    5. Pickup of may be available on a case-by-case basis.
    6. A variety of payment methods are accepted by MPS.
    7. Additional international shipping costs may apply for delivery addresses outside the MPS servicing region. If any doubts, please be in touch prior to placing an order.
    8. After purchase, the email address on the order may be placed on an MPS marketing-related mailing list automatically. Customers may unsubscribe at any time.
  4. Safety
    1. Products supplied by MPS are to be used at the end-users own risk. For electrical products, these risks include fire, electrical shock and death.
    2. MPS products should only be connected to protected electrical circuits; failure to follow such instructions may void warranty and liability.